jueves, 25 de noviembre de 2010

FOTOSINTESIS

 A diferencia de los animales, que necesitan digerir alimentos ya elaborados, las plantas son capaces de producir sus propios alimentos a través de un proceso químico llamado fotosíntesis. Para realizar la fotosíntesis las plantas disponen de un pigmento de color verde llamado clorofila que es el encargado de absorber la luz adecuada para realizar este proceso. Además de las plantas, la fotosíntesis también la realizan las algas verdes y ciertos tipos de bacterias. Estos seres capaces de producir su propio alimento se conocen como autótrofos.
La fotosíntesis es un proceso que transforma la energía de la luz del sol en energía química. Consiste, básicamente, en la elaboración de azúcares a partir del C02 ( dióxido de carbono) minerales y agua con la ayuda de la luz solar. 



Los orgánulos citoplasmáticos encargados de la realización de la fotosíntesis son los cloroplastos, unas estructuras polimorfas y de color verde (esta coloración es debida a la presencia del pigmento clorofila) propias de las células vegetales. En el interior de estos orgánulos se halla una cámara que contiene un medio interno llamado estroma, que alberga diversos componentes, entre los que cabe destacar enzimas encargadas de la transformación del dióxido de carbono en materia orgánica y unos sáculos aplastados denominados tilacoides o lamelas, cuya membrana contiene pigmentos fotosintéticos. En términos medios, una célula foliar tiene entre cincuenta y sesenta cloroplastos en su interior.Los organismos que tienen la capacidad de llevar a cabo la fotosíntesis son llamados fotoautótrofos (otra nomenclatura posible es la de autótrofos, pero se debe tener en cuenta que bajo esta denominación también se engloban aquellas bacterias que realizan la quimiosíntesis) y fijan el CO2 atmosférico. En la actualidad se diferencian dos tipos de procesos fotosintéticos, que son la fotosíntesis oxigénica y la fotosíntesis anoxigénica. La primera de las modalidades es la propia de las plantas superiores, las algas y las cianobacterias, donde el dador de electrones es el agua y, como consecuencia, se desprende oxígeno. Mientras que la segunda, también conocida con el nombre de fotosíntesis bacteriana, la realizan las bacterias purpúreas y verdes del azufre, en las que en dador de electrones es el sulfuro de hidrógeno, y consecuentemente, el elemento químico liberado no será oxígeno sino azufre, que puede ser acumulado en el interior de la bacteria, o en su defecto, expulsado al agua.


FACTORES QUE CONDICOONAN LA FOTOSINTESIS


La fotosíntesis esta condicionada por cinco principales factores:

- La luz: Es necesaria para que se pueda realizar este proceso. Debe ser una luz adecuada puesto que su eficacia depende de las diferentes longitudes de onda del espectro visible. La más eficaz es la rojo-anaranjada. La luz azul es muy poco eficaz y prácticamente nula la verde, aunque algunas plantas marinas son capaces de aprovecharla.
- El agua: Componente imprescindible en la reacción química de la fotosíntesis. Constituye también el medio necesario para que se puedan disolver los elementos químicos del suelo que la plantas deben utilizar para construir sus tejidos.
- El dióxido de carbono: Constituye el " material" que, fijado con el agua, las plantas utilizan para sintetizar hidratos de carbono. Penetra en las hojas a través de los estomas, aunque, en una proporción muy pequeña, puede proceder del bicarbonato disuelto en el agua del suelo que la plantas absorben mediante sus raíces.
- Los pigmentos : Son las substancias que absorben la luz necesaria para producir la reacción . Entre ellos, el principal es la clorofila o pigmento verde que da el color a las plantas. La clorofila se encuentra mezclada con otros pigmentos, aunque al aparecer en una mayor proporción, generalmente impone su color sobre el resto que queda enmascarado.
- La temperatura: Es necesaria una temperatura determinada para que puede producirse la reacción. Se considera que la temperatura ideal para una productividad máxima se encuentra entre los 20 y los 30 ºC, sin embargo puede producirse entre los 0 y los 50 ºC, de acuerdo a las condiciones en que cada planta se ha ido adaptando a su medio. Es posible incluso con una temperatura de -0,5 ºC. Por debajo del punto de congelación no puede darse la fotosíntesis. 

FASES DE LA FOTOSINTESIS


La fotosíntesis presenta dos fases:

- Fase fotoquímica o reacción de Hill

Anteriormente se conocía como fase luminosa. Para que se dé esta fase las plantas deben absorber la luz. Las plantas absorben la luz a través de substancias llamadas pigmentos. Entre todos ellos , destaca la clorofila, que es el pigmento de color verde que se encuentra en el interior de los cloroplastos de la célula vegetal.
Es la gran proporción de este pigmento el que determina que las plantas presenten principalmente su coloración verde ya que la mayor cantidad de clorofila enmascara la menor proporción del resto de pigmentos. Las plantas las vemos verdes porque la luz verde al no ser absorbida es captada por nuestros ojos. Sin embargo, es la luz roja -anaranjada y la azul la que es utilizada por la mayoría de las plantas para realizar la fotosíntesis. Otras plantas, como ciertas algas marinas rojas, , son capaces de absorber la luz verde para realizar la fotosíntesis. Para ello utilizan pigmentos diferentes a la clorofila. 



Los pigmentos deben su color a la luz que no son capaces de absorber. Así, por ejemplo, la clorofila absorbe prácticamente todos los colores del espectro visible excepto el verde. Por lo tanto, la capacidad de absorción de la clorofila y de otros pigmentos y la intensidad de la fotosíntesis dependerá de los diferentes tipos de longitud de onda lumínica. Dado que la clorofila es el pigmento principal, la absorción será la mayor dentro del espectro rojo-anaranjado, inferior en el espectro azul y prácticamente ineficaz en el espectro verde.
Existen dos tipos de clorofila: la clorofila A que tiene un color verde azulado y la clorofila B que presenta un color verde amarillento. La primera es mucho más abundante que la segunda ya que aparece en una proporción tres veces superior. La clorofila A está encargada principalmente de capturar las longitudes de onda violeta y rojo.
Los pigmentos vegetales no se presentan aislados sino que se combinan entre ellos. Así, junto a la clorofila A y B , existen otros pigmentos llamados carotenoides y ficobilinas. Estas últimas aparecen en organismos vegetales inferiores ( algas y cianobacterias) . Los carotenoides pueden ser carotenos, con una coloración rojiza anaranjada y xantófilas con una coloración amarillenta y parda. Carotenoides y ficobilinas, junto con la clorofila B, son los responsables de absorber aquellas longitudes de onda que no es capaz de absorber la clorofila A ( verde y anaranjado -rojo) . De esta manera , una vez absorbida, la transfieren a la clorofila A, para que pueda transformarlas.

  La perdida del verde de la clorofila a medida que las hojas se van secando deja ver otros pigmentos vegetales que antes estaban ocultos por aquella.

- Fase de fijación del dióxido de carbono ( Ciclo de Calvin)








Corresponde a lo que anteriormente se le conocía como fase oscura. Hoy en día se prefiere omitir este término al haberse aceptado que este proceso necesita también de la luz para poder llevarse a cabo. Este ciclo se produce en los cloroplastos del estroma y convierte el CO2 que las plantas absorben a través de los estomas en hidratos de carbono. Para que pueda darse este proceso se deberán utilizar los materiales elaborados en la anterior fase.  


FOTORESPIRACION

Este proceso, que implica el cierre de los estomas de las hojas como medida preventiva ante la posible pérdida de agua, se sobreviene cuando el ambiente es cálido y seco. Es entonces cuando el oxígeno generado en el proceso fotosintético comienza a alcanzar altas concentraciones.
Cuando existe abundante dióxido de carbono, la enzima RuBisCO (mediante su actividad como carboxilasa) introduce el compuesto químico en el ciclo de Calvin con gran eficacia. Pero cuando la concentración de dióxido de carbono en la hoja es considerablemente inferior en comparación a la de oxígeno, la misma enzima es la encargada de catalizar la reacción de la RuBisCO con el oxígeno (mediante su actividad como oxigenasa), en lugar del dióxido de carbono. Esta reacción es considerada la primera fase del proceso fotorrespiratorio, en el que los glúcidos se oxidan a dióxido de carbono y agua en presencia de luz. Además, este proceso supone una pérdida energética notable al no generarse ni NADH ni ATP (principal rasgo que lo diferencia de la respiración mitocondrial).
Cuando una molécula de RuBisCO reacciona con una de oxígeno, se origina una molécula de ácido fosfogliceraldehido y otra de ácido fosfoglicólico, que prontamente se hidroliza a ácido glicólico. Este último sale de los cloroplastos para posteriormente introducirse en los peroxisomas (orgánulos que albergan enzimas oxidativos), lugar en el que vuelve a reaccionar con oxígeno para producir ácido glioxílico y peróxido de hidrógeno (la acción de la enzima catalasa catalizará la descomposición de este compuesto químico en oxígeno y agua). Sin embargo el ácido glioxílico se transforma en glicina, aminoácido que se traspasa a la mitocondrias para formarse una molécula de serina a partir de dos de ácido glioxílico (este proceso conlleva la liberación de una molécula de dióxido de carbono). 

COMO SE PRODUCE LA FORTOSINTESIS 

La fotosíntesis se produce principalmente en las hojas de las plantas, aunque en menor proporción puede producirse en los tallos, especialmente en algunas plantas que han sufrido adaptaciones, como los cactus o las plantas crasas.
Las hoja consta fundamentalmente de las siguientes partes:
- Epidermis: La epidermis es la capa externa de la hoja que la cubre tanto por el haz como por el envés.
- Mesófilo : El mesófilo es la capa media de la hoja.
- Los haces vasculares: Son los canales que, en forma de venas, permiten el transporte de substancias nutritivas y agua.
- Los estomas: Son una especie de agujeros o válvulas que permiten el intercambio de gases entre el interior de la hoja y el medio exterior.
El proceso de fotosíntesis se lleva a cabo en la capa media de la hoja o mesófilo, en donde se hallan los órganos especializadas en este proceso llamados cloroplastos. Los cloroplastos constan fundamentalmente de una membrana externa, una membrana interna y de una serie de sacos, llamados tilacoides, en cuyas membranas se forma la clorofila u otros pigmentos. Los tilacoides aparecen agrupadas en columnas verticales llamadas granas. El espacio restante interior de los cloroplastos queda cubierto por un fluido llamado estroma.
La reacción se produce en las membranas de los tilacoides donde se encuentran los pigmentos que son capaces de absorber las diferentes longitudes de onda de la luz. Esta absorción de la luz produce una reacción química cuando la energía de los fotones descompone el agua y libera oxígeno, protones y electrones. Los electrones se utilizan para sintetizar dos moléculas encargadas de almacenar y transportar energía : la ATP ( Adenosin Trifosfato o Trifosfato de adenosina) y NADP (Nicotiamida-Adenina Dinucleotido fosfato) .
Estas dos moléculas se utilizarán en la siguiente fase de la fotosíntesis para trasformar el dióxido de carbono (C02) y el agua ( H2 0) para la producción de materia orgánica. ( hidratos de carbono)
La fase de fijación del dióxido de carbono o Ciclo de Calvin no se lleva a cabo en los tilacoides sino en el estroma. Durante este ciclo el dióxido de carbono y el ATP consiguen formar el primer compuesto orgánico en forma de moléculas de gliceraldehido-3-fosfato una molécula que contiene tres átomos de carbón, a partir de las cuales se forman los hidratos de carbono. En la mayoría de las plantas el Ciclo de Calvin esta ligado a la fase fotoquímica de manera que las plantas se regulan a través de encimas para que ambos procesos se produzcan a la vez. Las plantas que siguen este proceso se denominan plantas C3


Foto de hoja de encina con un detalle ampliado en el que se pueden apreciar los cloroplastos.

Ruta de Hatch-Slack o de las plantas C4

En los vegetales propias de las zonas con clima tropical, donde la fotorrespiración podría revestir un problema de notable gravedad, se presenta un proceso diferente para captar el dióxido de carbono. En estas plantas se distinguen dos variedades de cloroplastos: existen unos que se hallan en la células internas, contiguos a los vasos conductores de las hojas, y otros que están en las células del parénquima clorofílico periférico, lo que se llama mesófilo. Es en este último tipo de cloroplasto en el que se produce la fijación del dióxido de carbono. La molécula aceptora de este compuesto químico es el ácido fosfoenolpirúvico (PEPA), y la enzima que actúa es la fosfoenolpiruvato carboxilasa, que no se ve afectada por una alta concentración de oxígeno.
Partiendo del ácido fosfoenolpirúvico y del dióxido de carbono se genera el ácido oxalacético, constituido por cuatro carbonos (es de aquí de donde proviene el nombre de plantas C4). El susodicho ácido se transforma en málico, y este a través de los plasmodesmos, pasa a los cloroplastos propios de las células internas. En estos se libera el dióxido de carbono, que será apto para proseguir el ciclo de Calvin. A consecuencia de ello, en estas plantas no se produce ningún tipo de alteración a consecuencia de la respiración.


La piña (Ananas comosus), que pertenece a la familia Bromeliaceae, tiene el metabolismo propia de las CAM.

PLANTAS CAM

La sigla CAM es empleada como abreviación de la equívoca expresión inglesa Crassulacean Acidic Metabolism, que puede ser traducida al español como metabolismo ácido de las Crasuláceas. Esta denominación se acuñó dado que en un principio este mecanismo únicamente fue atribuido a las plantas pertenecientes a esta familia, es decir, a las Crasuláceas. No obstante, en la actualidad se conocen a varias especies de plantas CAM, que pertenecen a diferentes familias de plantas crasas o suculentas (Crassulaceae, Cactaceae, Euphorbiaceae, Aizoaceae son tan sólo algunos ejemplos). Por norma general, las plantas CAM son vegetales originarios de zonas con unas condiciones climáticas desérticas o subdesérticas, que se encuentran sometidas a una intensa iluminación, a altas temperaturas y a un déficit hídrico permanente. Pueden ser enumeradas muchas peculiaridades de estas plantas, como que el tejido fotosintético es homogéneo, siendo apreciable además la inexistencia de vaina diferenciada y de clorénquima en empalizada.

Como ha sido mencionado, las plantas CAM se encuentra perfectamente adaptadas a las condiciones de aridez extremas, por lo que resulta lógico que sus estomas se abran durante la noche, para evitar en la medida de lo posible la pérdida de agua por transpiración, fijando dióxido de carbono en oscuridad por una reacción de carboxilación de PEP catalizada por PEP carboxilasa en el citosol. Como resultado se produce la formación de oxalacetato y malato que es almacenado en la vacuola, sobreviniéndose una acidificación nocturna de la hoja. El malato almacenado en la vacuola es liberado durante el día mientras los estomas permanecen cerrados, siendo llevado al cloroplasto. Una vez en el orgánulo mentado, el malato es descarboxilado por la enzima málico NADP dependiente y el dióxido de carbono que se desprende es fijado en el ciclo de Calvin. El ácido pirúvico se convierte nuevamente en azúcares, para finalmente convertirse en almidón. La fijación y reducción del carbono en las plantas CAM presenta unos requerimientos energéticos, en términos de ATP, mayores que en las plantas C3 y C4; su rendimiento fotosintético por unidad de tiempo es menor y su crecimiento es más lento. Como consecuencia de la adaptación de estas plantas a sus hábitats extremos, los mecanismos que regulan el equilibrio entre transpiración y fotosíntesis están encaminados fuertemente hacia la minimización de las pérdidas de agua, asegurando así la supervivencia en el medio desértico, aunque a costa de una menor productividad.
También se tiene constancia de la existencia de plantas que poseen la capacidad de adaptar su metabolismo a las condiciones ambientales de modo que pueden presentar un ciclo CAM de carácter adaptativo, es decir, aunque se comportan como C3 pueden inducir el ciclo CAM cuando están sometidas a ciertas circunstancias. Son las denominadas CAM facultativas, siendo ejemplo representativo de ellas la Mesembryanthemum crystallinum, la cual realiza ciclo C3 en condiciones normales de no estrés, pero cambia a ciclo CAM en respuesta a situaciones de estrés.

FOTOSISTEMAS Y PIGMENTOS FOTOSINTESTICOS

Los fotosistemas

Los pigmentos fotosintéticos se hayan alojados en unas proteínas transmembranales que forman unos conjuntos denominados fotosistemas, en los que se distinguen dos unidas diferentes: la antena y el centro de reacción.
En la antena, que también puede aparecer nombrada como LHC (abreviatura del inglés Light Harvesting Complex), predominan las pigmentos fotosintéticos sobre las proteínas. De hecho, existen entre doscientas y cuatrocientas moléculas de pigmentos de antena de varios tipos y tan sólo dos proteínas intermembranales. Sin embargo, la antena carece de pigmento diana.
En el centro de reacción, mentado en algunas ocasiones como CC (abreviatura del inglés Core Complex), las proteínas predominan sobre los pigmentos. En el centro de reacción es donde está el pigmento diana, el primer aceptor de electrones y el primer dador de electrones. En término generales, se puede decir que existe una molécula de pigmento diana, unas cuantas de pigmentos no diana, una de primer dador de electrones y una de primer aceptor. Mientras existen entre dos y cuatro proteínas de membrana.

Fotosistema I y Fotosistema II

  • El Fotosistema I (PSI) capta la luz cuya longitud de onda es menor o igual a 700 nm y en las plantas superiores, su antena se caracteriza por encerrar dentro de sí una gran proporción de clorofila α, y una menor de clorofila β. En el centro de reacción, la molécula diana es la clorofila αI que absorbe a 700 nm, siendo llamada por ello clorofila P700. El aceptor primario de electrones se denomina aceptor A0 y el dador primario es la plastocianina. Sobre todo, se hallan presentes en los tilacoides del estroma.
  • El Fotosistema II (PSII) capta luz cuya longitud de onda es menor o igual a 680nm.

Los pigmentos fotosintéticos y la absorción de la luz

Los pigmentos fotosintéticos son lípidos que se hayan unidos a proteínas presentes en algunas membranas plasmáticas, y que se caracterizan por presentar alternancia de enlaces sencillos con enlaces dobles. Esto se relaciona con su capacidad de aprovechamiento de la luz para iniciar reacciones químicas, y con poseer color propio. En las plantas se encuentran las clorofilas y los carotenoides; en las cianobacterias y las algas rojas también existe ficocianina y ficoeritrina; y finalmente, en las bacterias fotosintéticas está la bacterioclorofila.
La clorofila está formada por un anillo porfirínico con un átomo de magnesio en el centro, asociado a un metanol y a un fitol (monoalcohol de compuesto de veinte carbonos). Como consecuencia, se conforma una molécula de carácter anfipático, en donde la porfirina actúa como polo hidrófilo y el fitol como polo lipófilo. Se distinguen dos variedades de clorofila: la clorofila a, que alberga un grupo metilo en el tercer carbono porfirínico y que absorbe luz de longitud de onda cercana a 630 nm, y la clorofila b, que contiene un grupo formilo y que absorbe a 660 nm.
Los carotenoides son isoprenoides y absorben luz de 440 nm, pudiendo ser de dos clases: los carotenos, que son de color rojo, y las xantófilas, derivados oxigenados de los nombrados anteriormente, que son de color amarillento. Las ficocianinas y las ficoeritrinas, de color azul y rojo respectivamente, son lípidos que se hayan asociados a proteínas originando las ficobiliproteínas.
Como los pigmentos fotosintéticos tienen enlaces covalentes sencillos que se alternan con enlaces covalentes dobles, se favorece la existencia de electrones libres que no pueden atribuirse a un átomo concreto.
Cuando incide un fotón sobre un electrón de un pigmento fotosintético de antena, el electrón capta la energía del fotón y asciende a posiciones más alejadas del núcleo atómico. En el supuesto caso de que el pigmento estuviese aislado, al descender al nivel inicial, la energía captada se liberaría en forma de calor o de radiación de mayor longitud de onda (fluorescencia). Sin embargo, al existir diversos tipos de pigmentos muy próximos, la energía de excitación captada por un determinado pigmento puede ser transferida a otro al que se induce el estado de excitación. Este fenómeno se produce gracias a un estado de resonancia entre la molécula dadora relajada y la aceptora. Para ello se necesita que el espectro de emisión del primero coincida, al menos en parte, con el de absorción del segundo. Los excitones se transfieren siempre hacia los pigmentos que absorben a mayor longitud de onda, continuando el proceso hasta alcanzar el pigmento fotosintético diana.



IMPORTANCIA DE LA FOTOSINTESIS

Resultante de este proceso, es el oxígeno., un producto de deshecho, que proviene de la descomposición del agua. El oxígeno, que se forma por la reacción entre el CO2 y el agua, es expulsado de la planta a través de los estomas de las hojas.
Las plantas han tenido y tienen un papel fundamental en la historia de la vida sobre la Tierra. Ellas son las responsables de la presencia del oxígeno, un gas necesario para la mayoría de seres que pueblan actualmente nuestro planeta y que lo necesitan para poder respirar. Pero esto no fue siempre así. En un principio la atmósfera de la Tierra no tenía prácticamente oxígeno y era especialmente muy rica en dióxido de carbono (CO2), agua en forma de vapor   (H2O) , y nitrógeno (N) . Este ambiente hubiera sido irrespirable para la mayoría de las especies actuales que necesitan oxígeno para poder vivir.
Los primeros seres vivos no necesitaban oxígeno para poder respirar. Al contrario, este gas constituía un veneno para ellos. Fueron ciertas bacterias, junto con las plantas, las que, hace más de 2000 millones de años empezaron a iniciar el proceso de la fotosíntesis, transformando la atmósfera y posibilitando la vida tal como se conoce en la actualidad. 


9 comentarios:

  1. Hola tengo na pregunta, el cativo (Prioria copaifera Grisebach) que tipo de plantas es? ¿donde me puedo buscar una base de datos que me de la clasificación del tipo de planta c3, c4 o cam.

    Gracias

    ResponderEliminar
  2. Muchas gracias me sirvio para mi proyecto !!!! :D

    ResponderEliminar
  3. Esà muy bien hecho, es muy y claro y pedagógico.
    Gracias.

    ResponderEliminar
  4. Creo que falta poner bibliografía para saber de donde proviene la información.

    ResponderEliminar
  5. una pregunta-que color de luz absorben los pigmentos fotosintéticos, sí podrían decir que pigmento absorbe cada color?

    ResponderEliminar
  6. Es el proceso mas importante que se realiza a diario para poder tener oxigeno , es realmente increible la perfeccion de las plantas y de su fisiologia.

    ResponderEliminar